An Invariant Set in Energy Space for Supercritical Nls in 1d
نویسنده
چکیده
We consider radial solutions of a mass supercritical monic NLS and we prove the existence of a set, which looks like a hypersurface, in the space of finite energy functions, invariant for the flow and formed by solutions which converge to ground states. §
منابع مشابه
Numerical Simulations of the Energy- Supercritical Nonlinear Schrödinger Equation
We present numerical simulations of the defocusing nonlinear Schrödinger (NLS) equation with an energy supercritical nonlinearity. These computations were motivated by recent works of Kenig-Merle and Kilip-Visan who considered some energy supercritical wave equations and proved that if the solution is a priori bounded in the critical Sobolev space (i.e. the space whose homogeneous norm is invar...
متن کاملBlow-up for the 1d Nonlinear Schrödinger Equation with Point Nonlinearity Ii: Supercritical Blow-up Profiles
We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity, (0.1) i∂tψ + ∂ 2 xψ + δ|ψ|p−1ψ = 0, where δ = δ(x) is the delta function supported at the origin. In the L supercritical setting p > 3, we construct self-similar blow-up solutions belonging to the energy space Lx ∩Ḣ x. This is reduced to finding outgoing solutions of a certain stationary profile equation. ...
متن کاملA Revision of ”on Asymptotic Stability in Energy Space of Ground States of Nls in 1d”
This is a revision of the author’s paper ”On asymptotic stability in energy space of ground states of NLS in 1D” [C3]. We correct an error in Lemma 5.4 [C3] and we simplify the smoothing argument. §
متن کاملOn Asymptotic Stability in Energy Space of Ground States of Nls in 1d
We transpose work by T.Mizumachi to prove smoothing estimates for dispersive solutions of the linearization at a ground state of a Nonlinear Schrödinger equation (NLS) in 1D. As an application we extend to dimension 1D a result on asymptotic stability of ground states of NLS proved by Cuccagna & Mizumachi for dimensions ≥ 3. §
متن کاملGlobal Well-posedness and Scattering for Defocusing Energy-critical Nls in the Exterior of Balls with Radial Data
We consider the defocusing energy-critical NLS in the exterior of the unit ball in three dimensions. For the initial value problem with Dirichlet boundary condition we prove global well-posedness and scattering with large radial initial data in the Sobolev space Ḣ1 0 . We also point out that the same strategy can be used to treat the energy-supercritical NLS in the exterior of balls with Dirich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008